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INVASION ZONES IN LATERAL DRILLING

UDC 532.546; 533.15V. V. Shelukhin1 and I. N. Yeltsov2

A mathematical model for mud filtrate invasion in lateral drilling is proposed. The main assumption is
that the difference in density between the invading and formation fluids is insignificant. Gravitational
asymmetry of the invasion front is determined, and it is established that with time one of its points
becomes abnormal and the entire invasion zone loses convexity. The main reason for the asymmetry
is the density difference. If a lighter drilling mud is injected, the front “floats up”; if the mud is
heavier, the front “floats down.” The abnormal point of the front appears below or above the borehole,
depending on the drilling mud weight. In the case where the mud is lighter than the formation fluid,
the point of the front directly under the center of the borehole has the special property that with time
it is less advanced downward than the neighboring left and right points of the front if the advance
is reckoned from the horizontal axis through the center of the borehole. This property is the most
pronounced for a small pressure difference between the borehole and formation equal to a certain
critical value: under such conditions, the indicated point of the front does not move at all. For large
pressure differences, the frontal advance is nearly equal in all directions.

Key words: filtration, horizontal hole, displacement front.

Introduction. During formation drilling, the mud invading the borehole zone, as a rule, has different
physical properties than the formation fluids. As a result, the characteristics of the invasion zone differ from those
of the uninvaded zone of the formation. In the invaded zone, nonuniform distributions of the electric resistance, oil
saturation, salt content, and other important characteristics are observed. For nearly all modern geophysical tools
of borehole research, the invaded zone is a hindering object. To correctly determine the formation characteristics,
it is necessary to know the properties of the invaded zone. For straight-hole drilling using clay drilling muds,
a combined geophysical and hydrodynamic model of the borehole zone was developed. A method of integrated
interpretation of electromagnetic logs and technological drilling parameters based on hydrodynamic modeling of
invasion was proposed [1].

However, in the last decade, horizontal drilling has found numerous applications. Apart from conventional
drilling muds, oil-based muds have been used, and the excess of the borehole pressure over the formation pressure
can be insignificant or even equal to zero. In this case, mud filtrate invasion into the formation can be substantially
asymmetric because of gravity. Physical experiments and computer simulations have shown that such asymmetry
is indeed the case [2]. Visual observations and measurements using industrial radars in experiments with water-
saturated sand [3] have revealed an unusual anomaly of the brine invasion front (Fig. 1). The reasons for this are
still unclear, and, require further research, including theoretical one.

The present paper deals with mud invasion during lateral drilling. Emphasis is on the effect of the pressure
difference between the borehole and formation on the geometry of the invasion front. Therefore, we do not consider
the case of multiphase filtration, ignore the anisotropy of the formation, and assume that the densities of the mud
and formation fluid differ insignificantly.
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rw < rf, dp = dp*

Fig. 1 Fig. 2

It is shown that even under these assumptions, the invaded zone loses convexity with time. In this case, the
point of the front that moves away from the center of the borehole more slowly than the others ultimately appears
less advanced (compared to the neighboring points on the left and right) not only from the center of the borehole
but also from the horizontal axis through the center of the borehole. We note that this result was obtained mainly
by means of theoretical analysis. In addition, there is a certain critical pressure difference between the borehole
and the formation δ∗p . Thus, if the formation fluid weight exceeds the mud weight and δp = δ∗p , the front at the
lower point of the borehole does not move, i.e., there is no mud filtrate invasion through this point of the borehole
(Fig. 2). For δp > δ∗p , invasion through the lower point occurs but at a slower rate than through the neighboring
points of the borehole. Conversely, if the formation fluid weight is lower than the drilling mud weight, then for δp =
δ∗p , the front does not move at the upper point of the borehole; for δp > δ∗p invasion through this point occurs but
at a slower rate than through the neighboring points of the borehole.

1. Mathematical Model. The mathematical model proposed below describes the simple situation where
the invading and formation fluids have identical viscosities and the mud density ρw differs from the density of the
formation fluid ρf only slightly. In this case, the fluid invading the formation loses clay particles on the borehole
wall, overcomes the additional resistance of the filtrate cake, and, when entering the formation, has the same density
as the formation fluid [4].

The flow pattern is assumed identical in each cross-sectional plane with the coordinates x1 and x2. The
cross section of the borehole is a circle of radius ε with center at the coordinate origin. The x2 axis is upright, and
the x1 axis is directed to the right parallel to the plane tangent to the ground. We consider the flow in the region
separated from the center of the borehole by a distance not larger than R; therefore cylindrical axes (r, ϕ) are used
below, and the angle ϕ is reckoned from the x1 axis upward.

Since the density of the formation fluid is constant, the salt distribution in the porous medium is described
by the following equations (see [5]):

Φct + div (qc) = 0, div q = 0, q = −k(∇p+ γf∇z), γf = ρfg. (1.1)

The flow is considered in a ring ε < r < R. The first equation is the transport equation, the second equation is
the incompressibility condition, and the third is the Darcy filtration law. The following notation is adopted: Φ is
the porosity, c is the mass concentration of the salt, q is the filtration velocity vector, p is the pressure, k is the
filtration coefficient, g is the acceleration of gravity, γf is the formation fluid weight, and z is the depth function
(z = x2).

Away from the borehole, the pressure is distributed under the hydrostatic law, and, hence, the following
boundary condition is satisfied:

r = R: H ≡ p+ γfz = pf = const. (1.2)

The equality

r = ε: q · n = −β[p] (1.3)
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is the boundary condition on the borehole wall (n is the outward normal vector to the circumference r = ε). Here
β−1 is the resistance coefficient and

[p] = lim
δ→0

(
p(1 + δ, ϕ)− p(1− δ, ϕ)

)
is the pressure jump. Condition (1.3) implies that the invasion velocity of the mud liquids depends linearly on the
pressure jump. As follows from (1.2), pf is the formation pressure at the level of the center of the borehole at a
distance R from it.

Another assumption is that the head Hw ≡ p + ρwgz on the borehole wall is identical for all particles of
the mud. This, in particular, is the case if the mud circulating in the annulus space is described by the Euler
hydrodynamic equations of irrotational flow. In this case, the Bernoulli integral holds, i.e.,

ρwv2/2 + p+ ρwgz = const.

Therefore, the head is identical for all particles having the same velocity |v|. Thus, on the borehole wall, the head
is constant:

r = ε: lim
δ→0

p(1− δ, ϕ) + γwz = pw ≡ const, γw = ρwg.

Hence, equality (1.3) can be written as

r = ε: Hr − β1H + β1(δγr sinϕ+ pw) = 0, β1 = β/k, δγ = γf − γw. (1.4)

System (1.1) should be supplemented by the boundary and initial conditions for the salt concentration:

c
∣∣∣
r=ε

= c1, c
∣∣∣
t=0

= c0. (1.5)

We note that the first of conditions (1.5) for c is meaningful only for those points of the circle r = ε at which the
velocity q is directed into the formation, i.e., the following inequality should be satisfied:

∂H

∂n
6 0 at r = ε. (1.6)

Below, this condition will be formulated in terms of the parameter δp.
2. Equations for the Invasion Front. The head H does not depend on time and is found as the solution

of the following boundary-value problem in polar variables:

∆H ≡ r(rHr)r +Hϕϕ = 0, H
∣∣∣
r=R

= pf , Hr − β1H + β1(δγr sinϕ+ pw)
∣∣∣
r=ε

= 0.

Using the method of separation of variables, we obtain

H = pf − b3 ln (r/R) + (−b1r + b2r
−1) sinϕ, (2.1)

where

b1 =
β1εδγ

(1− β1ε) + (1 + β1ε)(R/ε)2
, b2 = b1R

2, b3 =
δp

(β1ε)−1 + ln (R/ε)
, δp ≡ pw − pf .

This solution implies that the flow pattern is symmetric about the vertical axis. We find the stream function ψ

from the conditions ψx1 = kHx2 and ψx2 = −kHx1 using the curvilinear integral

ψ(x1, x2) =

(x1,x2)∫
(x0

1,x0
2)

−kHx1 dx2 + kHx2 dx1 =
∫
L1

. . .+
∫
L2

· · · , (x1, x2) = (r cosϕ, r sinϕ).

Here (x0
1, x

0
2) = (ε, 0). The segment L1 connects the point (x0

1, x
0
2) and the point (x∗1, x

∗
2) = (r, 0). The segment L1

is defined in the parametric form:

L1: x1 = ε+ µ(r − ε), x2 = 0, 0 6 µ 6 1.

The curvilinear segment L2 is the part of the circumference defined in the parametric form

L2: x1 = r cos(µϕ), x2 = r sin(µϕ), tan ϕ =
x1

x2
, 0 6 µ 6 1.
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Each integral
∫
Li

is calculated by the formula

∫
Li

. . . =

1∫
0

−kHx1(x1(µ), x2(µ))x′2(µ) + kHx2(x1(µ), x2(µ))x′1(µ) dµ,

where x1 = x1(µ), x2 = x2(µ) is the parametric specification of the segment Li. Finally, we obtain the following
representation for the stream function ψ in polar coordinates:

ψ(r, ϕ) = kb3ϕ− k(b1r + b2/r) cosϕ+ const.

Now, the trajectory of each liquid particle that issues from the point of the borehole (ε, ϕ0) is specified by the
equality ψ(r, ϕ) = ψ(ε, ϕ0).

The transport equation in polar coordinates is written as

ct − λ(crHr + r−2cϕHϕ) = 0 (λ = k/Φ)

or

ct + λ[b3r−1 + (b1 + b2r
−2) sinϕ]cr − λ cosϕ(−b1r−1 + b2r

−3)cϕ = 0.

It is known that such equations are solved by constructing characteristics along which the value of the solution
remains unchanged. In the space of the variables r, ϕ, and t, the characteristics are specified by the equations

dr

dt
= λ[b3r−1 + (b1 + b2r

−2) sinϕ], r(0) = ε,

dϕ

dt
= λ[b1r−1 − b2r

−3] cosϕ, ϕ(0) = ϕ0 ∈
[
− π

2
,
π

2

]
.

(2.2)

To construct the invasion front, it suffices to find the solution of system (2.2):

r = r(t, ϕ0), ϕ = ϕ(t, ϕ0), ϕ0 ∈
[
− π

2
,
π

2

]
. (2.3)

Equalities (2.3) define a parametric specification of this front with the parameter ϕ0. Elimination of the
parameter ϕ0 gives the equation of the front

r = r(t, ϕ). (2.4)

We convert to dimensionless variables. Let τ be the characteristic time of the invasion processes, for example,
one day. We denote r = εr̂ and t = τ t̂. Then, the dimensionless functions r̂(t̂) and ϕ(t̂) (below, the hat for the
dimensionless quantities is omitted) satisfy the system

dr

dt
= B3r

−1 + (B1 +B2r
−2) sinϕ, r(0) = 1,

dϕ

dt
= (B1r

−1 −B2r
−3) cosϕ, ϕ(0) = ϕ0 ∈

[
− π

2
,
π

2

]
,

(2.5)

where the dimensionless parameters Bi are specified by the formulas

B1 =
kτβ1δγ

Φ[(1− β1ε) + (1 + β1ε)(R/ε)2]
,

B2 =
kτβ1δγR

2

Φε2[(1− β1ε) + (1 + β1ε)(R/ε)2]
, B3 =

kτδp
Φε2[(β1ε)−1 + ln (R/ε)]

.

We denote v = sinϕ. Then, system (2.5) is equivalent to the following problem:

dr

dt
= B3r

−1 + (B1 +B2r
−2)v, r(0) = 1,

dv

dt
= (1− v2)(B1r

−1 −B2r
−3), v(0) = v0 ∈ [−1, 1].

(2.6)
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3. Qualitative Analysis of the Invasion Front. The behavior of the front is determined mainly by the
parameters δp and δγ . Depending on the sign of δγ , three cases are possible: δγ = 0, δγ > 0, and δγ < 0. We
consider them sequentially.

3.1. Let δγ = 0; then, B1 = B2 = 0 and the front is defined by the equations

ṙ = B3/r, v̇ = 0, r(0) = 1, v(0) = v0 ∈ [−1, 1]. (3.1)

Since for r = ε,
Hr = − β1δp

1 + β1ε ln (R/ε)
,

the necessary invasion condition (1.6) leads to the inequality δp > 0. Therefore, B3 > 0 and the solution of problem
(3.1) is given by the equalities

r(t) =
√

1 + 2tB3, v(t) = v0, B3 =
kτδp

Φε2((β1ε)−1 + ln (R/ε))
. (3.2)

Hence, the front is a circumference with center at the coordinate origin and radius specified by the formula (3.2).
3.2. Let δγ > 0. We first determine the conditions of satisfaction of inequalities (1.6). Using (1.4) and (2.1),

this inequality is written as

−δp − b3 ln (ε/R) + max
ϕ

(sinϕ[−b1ε+ b2ε
−1 − δγε]) 6 0,

i.e.,

δp
εδγ

>
(1 + (R/ε)2)(1 + (β1ε) ln (R/ε))

(1− β1ε) + (1 + β1ε)(R/ε)2
≡

δ∗p
εδγ

. (3.3)

In terms of Bi, inequality (3.3) is simplified to
B3 > B1 +B2. (3.4)

Inequality (3.4) is the condition on the borehole pressure pw under which there is invasion of the mud liquids into
the formation over the entire perimeter of the borehole. Below, it is assumed that inequality (3.4) is satisfied.

We analyze the invasion front using the following mathematical statement: at each t > 0, the function r(t, ϕ)
in (2.4), which specifies the front, increases monotonically with increase in ϕ (ϕ ∈ [−π/2, π/2]). In this case,

rϕ > 0 if − π/2 < ϕ < π/2, and rϕ = 0 if ϕ = ±π/2. (3.5)

Let us prove this statement. Since rϕ = rv cosϕ, it suffices to establish that

rv(t, v) > 0 at t > 0, −1 6 v 6 1, (3.6)

where
r = r(t, v) (3.7)

is the equation of the boundary of the invasion front in the variables (v, r) at fixed t > 0.
Let us differentiate equality (3.7) with respect to v0:

dr

dv0
=
dr

dv

dv

dv0
,

dr

dv
=
α

ω
, α =

dr

dv0
, ω =

dv

dv0
.

The functions α(t, v0) and ω(t, v0) satisfy the equations

dα

dt
= −B3r

−2α− 2B2r
−3vα+ (B1 +B2r

−2)ω, α(0, v0) = 0,

dω

dt
= (1− v2)(−B1r

−2 + 3B2r
−4)α− 2(B1r

−1 −B2r
−3)vω, ω(0, v0) = 1,

(3.8)

which are obtained by differentiation of equalities (2.6) with respect to v0.
Let [0, T ] be the time interval on which the solution of the problem (2.6) is defined and let the value of r

be not larger than R/ε. We show that α and ω are strictly positive in the entire interval (0, T ]. Let T1(v0) be the
first time when ω(t, v0) vanishes. We assume that T1(v0) < T . Considering the first equation of system (3.8) as an
ordinary differential equation for α, we obtain the following representation:
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rw < rf, dp > dp*

Fig. 3

α(t, v0) = A1

t∫
0

ω(s, v0)G1(s, v0) ds, A1(t, v0) = exp
( t∫

0

F1(s, v0) ds
)
,

F1(t, v0) = −B3r
−2 − 2B2r

−3v, G1(t, v0) = (B1 +B2r
−2)A−1

1 (t, v0).
(3.9)

Therefore, α > 0 on the interval [0, T1(v0)]. Similarly from the second equation of system (3.8), we obtain

ω(t, v0) = A2 +A2

t∫
0

α(s, v0)G2(s, v0) ds, A2 = exp
( t∫

0

F2(s, v0) ds
)
,

F2(t, v0) = −2(B1r
−1 −B2r

−3)v, G2(t, v0) = (1− v2)r−4A−1
2 (3B2 −B1r

2).
(3.10)

Since

3B2 −B1r
2 = B1(3(R/ε)2 − r2) > 2B1(R/ε)2 > 0,

we have ω(T1(v0), v0) > 0, which is a contradiction. Thus, ω(t, v0) is strictly positive on the entire interval [0, T ].
From (3.9) and (3.10), it is easy to conclude that α(t, v0) > 0 on (0, T ]. Therefore, inequality (3.6) and relations
(3.5) are satisfied.

The statement proved above implies that at each fixed time, the front is the least extended in the direction
ϕ = −π/2 from the center of the borehole, i.e., downward, and it is the most advanced in the direction ϕ = π/2,
i.e., upward. Furthermore, the advance is larger in the direction ϕ = ϕ2 than in the direction ϕ = ϕ1 if the angle
ϕ2 is larger than the angle ϕ1 (Fig. 3). The invasion depths in the directions ϕ = ±π/2 will subsequently be defined
by explicit formulas.

Let us consider the critical case

B3 = B1 +B2. (3.11)

Under this condition, system (2.6) for v0 = −1 has a solution that does not depend on time:

r = 1, v = −1.

Hence, if the pressure difference δp is critical, i.e., δp = δ∗p , the front “stands” at the lower point r = 1, ϕ = −π/2
(see Fig. 2).

Next, assuming that B3 > B1 + B2, i.e., δp > δ∗p , we find the smallest and largest offset distances from the
center r1(t) and r2(t). These functions are found by solving the equations

ṙ1 =
B3

r1
− B2

r21
−B1, ṙ2 =

B3

r2
+
B2

r22
+B1, r1(0) = r2(0) = 1. (3.12)

Their integration leads to the formulas

r1 − 1 + ln
(r1 − c1

1− c1

)n(r1 − c2
1− c2

)m

= −B1t,
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r2 − 1 + ln
(r2 + c2

1 + c2

)n(r2 + c1
1 + c1

)m

= B1t,

(3.13)

where c1 = b4 + æ, c2 = b4 − æ, n = b4 + (æ + b24/æ)/2, m = b4 − (æ + b24/æ)/2, b4 = B3/(2B1), and æ2

= B2
3/(4B

2
1)−B2/B1. Equalities (3.13) allow one to calculate the values of r1 and r2 at any accuracy, i.e., the mud

invasion depth down and up along the vertical through the center of the borehole. From Eqs. (3.12), we can also
obtain an approximate formula for the coefficient of symmetry along the vertical direction S(t) ≡ (r1− 1)/(r2− 1),
which characterizes the asymmetry of the front along the central vertical. Since ri − 1 = tṙi(0) + o(t), we have

S(t) =
r1(t)− 1
r2(t)− 1

≈ 1− ξ

1 + ξ
, ξ =

B1 +B2

B3
.

The smaller the period of time since the beginning of invasion, the more precise this formula will be. The symmetry
S = 100% if ξ = 0, i.e., the front is circumferential. The symmetry S = 0 if ξ = 1, i.e., the front “stands” at the
lower point of the borehole.

Generally, it is possible to introduce the coefficient of symmetry along the direction ϕ:

Sϕ(t) =
r(t,−ϕ)− 1
r(t, ϕ)− 1

, ϕ ∈ [0, π/2],

where r = r(t, ϕ) is the equation of the front obtained from the solution r = r(t, ϕ0), ϕ = ϕ(t, ϕ0) of systems (2.5)
after elimination of the parameter ϕ0. Obviously, the symmetry coefficients decrease monotonically with increase
in the angle and takes the smallest value for ϕ = π/2:

S0(t) = 1, Sϕ1(t) > Sϕ2(t) at 0 6 ϕ1 < ϕ2 6 π/2, Sπ/2(t) = S.

With time, the point of the front the nearest to the center of the borehole with the coordinates r = r1(t) and
ϕ = −π/2 becomes abnormal in the sense that the neighboring left and right points of the front appear below the
horizontal straight line z = r1(t) and, thus, the invasion zone is no longer a convex set. In the critical case where
B3 = B1 +B2, this property is easy to prove, and, generally, it is confirmed by fairly simple calculations.

Indeed, the horizontal straight line z = −r1(t) is specified in polar coordinates by the equation r sinϕ
= −r1(t) or rv = −r1(t), where v := sinϕ. For this line, we have

dr

dv
=
r1(t)
v2

;

therefore, for the equation of the front r = r(v, t), it suffices to establish that beginning from a certain time, the
following inequality holds:

J(t) :=
dr

dv

∣∣∣
v=−1

> r1(t). (3.14)

Setting v = −1 in formulas (3.8), we find that the function J(t) := (α/ω)
∣∣∣
v=−1

satisfies the equation

dJ

dt
= F3J +B1 +

B2

r21
, F3(t) :=

4B2

r31
− 2B1

r1
− B3

r21
, J(0) = 0.

Its solution is given by the formulas

J = A3(t)

t∫
0

(
B1 +

B2

r21(τ)

)
A−1

3 (τ) dτ, A3 := exp
( t∫

0

F3(τ) dτ
)
. (3.15)

In the critical case, r1(t) ≡ 1; therefore, formulas (3.15) are simplified:

J(t) = (B1 +B2) e3(B2−B1)t

t∫
0

e−3(B2−B1)s ds.

From this it is clear that starting from a certain time, J(t) > 1. Calculations of integrals (3.15) using formulas (3.13)
show that inequality (3.14) is generally satisfied for rather large t. Thus, with time, the point of the invasion front
directly beneath the center of the borehole inevitably becomes abnormal.
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rw > rf, dp = dp* rw > rf, dp > dp*

Fig. 4 Fig. 5

3.3. Let δγ < 0. In this case, mathematical analysis of the equations of the front is performed by the same
scheme as for δγ > 0. For this, it suffices to replace the positive parameters B1 and B2 by the negative parameters:
B1 := −|B1| and B2 := −|B2|. We give only the final results. The necessary condition of invasion (1.6) is satisfied
if the following inequality holds:

B3 > |B1|+ |B2|.

At each fixed time, the monotonicity property of the front is expressed by the conditions

rϕ < 0 if − π/2 < ϕ < π/2, and rϕ = 0 if ϕ = ±π/2. (3.16)

For B3 = |B1| + |B2|, the front “stands” at the top of the borehole (Fig. 4). Generally, the front is a
symmetric reflection (relative to the horizontal axis x2 = 0) of the front obtained for the case δγ := |δγ | (Fig. 5).
This follows from the fact that system (2.5) has the following symmetry. Let B1 < 0, B2 < 0, and B3 > 0.
We denote the solution of problem (2.5) by r(t;B1, B2, B3, ϕ0), ϕ(t;B1, B2, B3, ϕ0) and introduce the functions
r1(t) = r(t;B1, B2, B3, ϕ0) and ϕ1(t) = −ϕ(t;B1, B2, B3, ϕ0). Then, it is easy to verify that (r1, ϕ1) is a solution of
problem (2.5) if B1 is replaced by |B1|, B2 by |B2|, B3 by B3, and ϕ0 by −ϕ0, i.e.,

dr1
dt

= B3r
−1
1 + (|B1|+ |B2|r−2

1 ) sinϕ1, r1(0) = 1,

dϕ1

dt
= (|B1|r−1

1 − |B2|r−3
1 ) cosϕ1, ϕ1(0) = −ϕ0 ∈

[
− π

2
,
π

2

]
.

For δγ < 0, the symmetry coefficient is determined similarly:

Sϕ(t) =
r(t, ϕ)− 1
r(t,−ϕ)− 1

, ϕ ∈
[
0,
π

2

]
.

Here r = r(t, ϕ) is the equation of the front.
4. Numerical Analysis of the Invasion Front. The monotonicity property of the front along the

angular variable ϕ, expressed by conditions (3.5) or (3.16), gives only a qualitative picture of the invaded zone for
fixed times. To study the geometry of the front and its dynamics, we performed calculations of system (2.5) using
the Runge–Kutta method. The front was plotted as a set of points (rn

m, ϕ
n
m) = (r(tn, ϕm), ϕ(tn, ϕm)) for discrete

times tn and for a discrete set of initial data ϕm, where r(tn, ϕm), ϕ(tn, ϕm) is a numerical solution of the Cauchy
problem (2.5).

The calculations were performed for a certain typical set of physical parameters used in analysis of straight
holes [1]: borehole radius ε = 0.108 m, characteristic dimension of the formation R = 10 m, porosity Φ = 0.2, and
reduced filtration coefficient k0 ≡ kγf = 0.1 m/day.

In determining the numerical value of the resistance coefficient β1, we assume that it depends insignificantly
on the difference of the weights δγ and, hence, can be calculated by formulas (3.2) for experiments in which δγ = 0.
For a certain control pressure difference δc

p, let the invasion zone reached a value d (dimensionless value d/ε) for the
control time τ (corresponding to the dimensionless time t = 1). Then,
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d

ε
=

√
1 + 2B3, B3 =

kτδc
p

Φε2((β1ε)−1 + ln (R/ε))
.

From this, we obtain the reduced resistance coefficient β0 = β1kγf :

β0 =
Φk0(d2 − ε2)

2εk0τδ
c,0
p − εΦ(d2 − ε2) ln (R/ε)

, δc,0
p =

δc
p

γf
. (4.1)

As the control parameters, we use those calculated in [1] for a straight hole with a radially symmetric invasion front:
τ = 1 days, δc,0

p = 100 m, and d = 0.508 m. Then, from (4.1) we find that β0 = 2.3 · 10−3 1/day.
The dimensionless parameters Bi can be written as

B1 =
τβ0(1− γw/γf )

Φ(1− β0ε/k0 + (1 + β0ε/k0)(R/ε)2)
,

B2 = B1

(R
ε

)2

, B3 =
τk0δ

0
p

Φε2(k0/(εβ0) + ln (R/ε))
;

their numerical values can be found from these formulas.
The ratio of the weights γw/γf varies from 0.95 to 1.20. The reduced pressure jump δ0p ≡ δp/γf can reach

600 m.
The calculations show that the invasion front is extended with time along any half-line ϕ = const. Figures 2–5

illustrate this for relatively small values of δ0p for two successive times t1 = 0.5 day and t2 = 1 day when ε = 0.108 m,
R = 10 m, Φ = 0.2, k0 = 0.1 m/day, τ = 1 day, β0 = 2.3 · 10−3 1/day, and γw/γf = 0.95 or γw/γf = 1.20.

In conclusion, we give results of calculation of the vertical symmetry S for five successive times (days), when
γw/γf − 1 = 0.20, and δ0p = 100 m: 0.9998 for 0.5 day, 0.99991 for 1 day, 0.99994 for 2 days, 0.99997 for 4 days,
and 0.99998 for 5 days. These data were obtained by numerical solution of the Cauchy problem (2.5).

We calculate S by the approximate formula S ' (1− ξ)/(1 + ξ). Since

ξ ≡ |B1|+ |B2|
B3

=
γw/γf − 1

δ0p

(ε2 +R2)(1/ε+ (β0/k0) ln (R/ε))
1− εβ0/k0 +R2/ε2 + εβ0R2/(k0ε2)

,

we have ξ = 2.2 · 10−4 and S = (1 − ξ)/(1 + ξ) = 99.956%. Thus, under typical drilling conditions, the invasion
front is nearly circumferential.

At the drilling stage, the large pressure difference ensures mud circulation. After termination of drilling,
the pressure difference sharply reduces and the second stage of invasion occurs, in which the invading mud fluid
is “underlain” by the next portion of the mud, which is now at lower pressure. Thus, the problem of deformation
of a nearly circumferential front produced at the drilling stage arises. In view of the aforesaid, this work can be
regarded as development of a procedure for calculating the initial conditions for the second stage of invasion.
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